HBImed µ¥ÀÌÅͺ£À̽º´Â EEG ±â¹Ý ³ú Áø´ÜÀÇ ±Ùº»ÀûÀÎ º¯È¸¦ Á¦½ÃÇÕ´Ï´Ù.
HBImed Normative Database
Çѽº ¹ö°Å (Hans Berger)°¡ Áö³ ¼¼±âÀÇ 20 ¼¼±â ³úÆĸ¦ ¹ß°ßÇßÀ» ¶§ ±×´Â ³úÆÄ(Electroencephalogram)°¡ Á¤½Å °Ç° ¹®Á¦ÀÇ Áø´Ü¿¡ »ç¿ëµÉ °ÍÀ̶ó°í »ó»óÇÒ ¼ö ¾ø¾ú½À´Ï´Ù. ÄÄÇ»ÅÍ ±â¼úÀÇ Áøº¸¿Íº¸´Ù Á¤±³ÇÑ ½ÅÈ£ ºÐ¼®, Ç¥ÁØ µ¥ÀÌÅͺ£À̽ºÀÇ »ý¼ºÀÌ °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. HBimedÀÇ µ¥ÀÌÅͺ£À̽º´Â QEEG (½ºÆåÆ®·³ µ¥ÀÌÅÍ)¿Í ¸Å¿ì ³ôÀº ½ÅÈ£ ´ë ÀâÀ½ºñÀÇ ERP (ÀáÀçÀû µ¥ÀÌÅÍ À¯¹ß)¸¦ Æ÷ÇÔ ÇØ Åë°èÀûÀ¸·Î ÀǹÌÀÖ´Â °á°ú¸¦ »êÃâÇÏ´Â À¯ÀÏÇÑ ¼ÒÇÁÆ®¿þ¾îÀÔ´Ï´Ù.
HBimed ¹æ¹ý·ÐÀº Á¤º¸ÀÇ È帧À»º¸°í ±Ô¹üÀûÀÎ µ¥ÀÌÅͺ£À̽º¿Í ºñ±³ÇÔÀ¸·Î½á ÀÛ¾÷ÇÏ´Â µÎ³úÀÇ ºÐ¼®À» Çã¿ëÇÕ´Ï´Ù. HBimed µ¥ÀÌÅͺ£À̽º´Â ±× Á¾·ùÀÇ °¡Àå Áøº¸ µÈ µ¥ÀÌÅͺ£À̽ºÀÔ´Ï´Ù.
HBI µ¥ÀÌÅͺ£À̽º´Â Àü¹®°¡¸¦ °¡´ÉÇÏ°ÔÇÏ´Â Çõ½ÅÀûÀÎ µµ±¸ÀÔ´Ï´Ù.
• »ýäÁöÇ¥¸¦ ÅëÇØ ³ú ½Ã½ºÅÛÀÇ ±â´É Àå¾Ö¸¦ Æò°¡ÇÑ´Ù.
• º¸´Ù Á¤È®ÇÑ Áø´ÜÀ»ÇÏ°íº¸´Ù ¸íÈ®ÇÑ Ä¡·á ÀûÀÀÁõÀ» Á¤ÀÇÇϱâ À§ÇØ (¿¹ : AD(H)D)
• °³º° Ä¡·á (°³ÀÎ ¸ÂÃã ÀÇÇÐ)
• ¾à¹° È¿°ú¸¦ ¸ð´ÏÅ͸µÇϱâ À§ÇØ
• ¾à¹° ¹ÝÀÀÀ» ¿¹ÃøÇϱâ À§ÇØ
• ½Å¾à °³¹ß Áö¿ø
¾çÀû EEGP ½É¸®ÇÐÀÚµéÀº ¼º°Ý, º´¸®, µ¿±â, ÇнÀ Àå¾Ö¸¦ ÃøÁ¤Çϱâ À§ÇØ ½É¸®ÃøÁ¤(psychometrics)¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í Àý¹ÝÀÇ µðÀÚÀΰú ¿©·¯ °¡Áö ¿µ¸®ÇÑ Åë°è Á¶ÀÛÀ» ÅëÇØ ½É¸® ÃøÁ¤Àº ÀÚ°¡ ¶Ç´Â ´Ù¸¥ º¸°í¼¿¡¼ ¾òÀº Çൿ µ¥ÀÌÅÍ¿¡ ÀÇÇØ ¿©ÀüÈ÷ ³ªÅ¸³³´Ï´Ù. óÀ½¿¡´Â Á¤½Å Àå¾ÖÀÇ Áø´Ü ¹× Åë°è ¸Å´º¾ó (DSM-V)ÀÇ ´Ù¼¸ ¹ø° °³Á¤ÆÇÀÌ »ýüÁö·á¿¡ µû¶ó Á¤½Å Àå¾Ö¸¦ ºÐ·ùÇÏ´Â °ÍÀ» ¸ñÇ¥·Î »ï¾Ò½À´Ï´Ù. ¸¶Áö ¸øÇØ ³ªÅ¸³ª´Â °üÇàÀÇ ¹ÝÀÀ°ú ¾ÆÁ÷±îÁö ¿©·¯ °¡Áö ºÒÈ®½Ç¼ºÀÌ Á¸ÀçÇÑ´Ù´Â »ç½Ç ¶§¹®¿¡ »ýäÁöÇ¥ Á¢±Ù¹ýÀÇ Á¦ÀÛÀÚ´Â 6 Â÷ °³Á¤±îÁö DSM¿¡ Á¢±Ù¹ýÀÇ Æ÷ÇÔÀ» ¿¬±âÇϱâ·Î °áÁ¤Çß´Ù. »õ·Î¿î Á¢±Ù¹ýÀº Á¤½Å ÀÇÇÐÀû Áø´ÜÀÌ Çൿ»Ó¸¸ ¾Æ´Ï¶ó ¾î¶² ³ú ½Ã½ºÅÛÀÌ ¼Õ»óµÇ¾ú´ÂÁö¿¡ ´ëÇÑ Áö½ÄÀ¸·Îµµ ÀÌ·ç¾îÁø´Ù °í °¡Á¤ÇÕ´Ï´Ù. °´°ü¼º°ú Åõ¸í¼ºÀ¸·Î À̾îÁö±â ¶§¹®¿¡ »ýäÁöÇ¥ Á¢±Ù¹ýÀÌ ³Î¸® ¹Þ¾Æ µé¿©Áö´Â °ÍÀº °ÅÀÇ È®½ÇÇÕ´Ï´Ù. ¼öõ ¸íÀÇ ´Ù¸¥ ¿¬±¸ÀÚµé°ú ¸¶Âù°¡Áö·Î HBImed´Â ÀÌ¹Ì ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ¿¬±¸¸¦ ¼öÇàÇßÀ¸¸ç ´Ù¾çÇÑ Á¤½Å Àå¾Ö¸¦À§ÇÑ ¸Å¿ì ƯÁ¤ÇÑ »ýüÁöÇ¥·Î¼ Á¤·®Àû ³úÆÄ°è (QEEG) ¹× À̺¥Æ® °ü·Ã ÀáÀç·Â (ERPs)ÀÇ ±¸¼º ¿ä¼Ò¸¦ Á¤ÀÇÇß½À´Ï´Ù.
fMRI (±â´É¼º Àڱ⠰ø¸í ¿µ»ó)¿Í °°Àº Çö´ë ¿µ»ó ±â¼úÀº ³ú¿¡¼ÀÇ »ý¹°ÇÐÀû °úÁ¤°ú ÀÎÁö, Çൿ ¹× °¨Á¤ »çÀÌÀÇ °ü°è¸¦ ¿¬±¸ ÇÒ ¼ö ÀÖÁö¸¸, ÈξÀ ´õ ½±°í Àú·Å ÇÑ ¹æ¹ýÀÌ ÇÊ¿äÇÕ´Ï´Ù. Çö´ëÀÇ ½ÅÈ£ ó¸® ¹× ÄÄÇ»ÅÍ Áö¿ø ºÐ¼® ÀýÂ÷·Î ÀÎÇØ ³úÀÇ Á¤º¸ ÇÁ·Î¼¼½º´Â ÀÌÁ¦ ³úÆÄ (EEG)¿¡¼ ¸Å¿ì Á¤È®ÇÏ°Ô ÆÄ»ý µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÇöÀç ¸ðµç ¾÷¹«¿¡ ÀûÇÕÇÕ´Ï´Ù. ´ç¿¬È÷ µµÀüÀº ƯÁ¤ Áúº´¿¡ ÀüÇüÀûÀÎ ³úÆÄÀÇ ÆÐÅÏÀ» È®ÀÎÇÏ´Â °ÍÀÔ´Ï´Ù. ±×·¯ÇÑ ÆÐÅÏÀÇ Åë°èÀû À¯ÀǼºÀÌ ÃæºÐÇÏ´Ù¸é, °´°üÀûÀÎ Áø´Ü ¹× Ç¥Àû Ä¡·á¸¦À§ÇÑ ±âÃʷμ »ýäÁöÇ¥·Î Á¤ÀÇ µÉ ¼ö ÀÖ½À´Ï´Ù.
³ú È°µ¿ÀÇ °üÂû·ÎºÎÅÍ Á¤È®ÇÑ °á·ÐÀ» ³»¸®±â À§Çؼ´Â ±Ô¹üÀûÀÎ µ¥ÀÌÅͺ£À̽º¿ÍÀÇ ºñ±³°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿©±â¼´Â ±ú¾îÀÖ´Â ÈÞ½Ä »óÅÂÀÇ ³úÆÄ ºÐ¼® ( "ÈÞ½Ä ³úÆÄ")¿¡ ÀÇÇØ °áÁ¤µÇ´Â ³úÀÇ ÀÚ±â Á¶Á÷È °úÁ¤ ¿Ü¿¡µµ Á¤º¸ ó¸® °úÁ¤À» ºÐ¼®ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ°ÍÀº Ç¥ÁØÈ µÈ °úÁ¦¸¦ ¹Ýº¹ÀûÀ¸·Î ÇØ°áÇÏ´Â µ¿¾È ´Ù¸¥ µÎ³ú ¿µ¿ª ( "evoked potentials"- ERP)ÀÇ È°¼ºÈ °üÂû¿¡¼ °áÁ¤µË´Ï´Ù. HBImed AG µ¥ÀÌÅͺ£À̽º¿¡´Â 7~87 ¼¼ »çÀÌÀÇ ¼öõ ¸íÀÇ °Ç°ÇÑ »ç¶÷°ú ´Ù¸¥ ȯÀÚ ±×·ìÀÇÀÚ°¡ Á¶Á÷ ¹× Á¤º¸ ó¸® ÇÁ·Î¼¼½º°¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç ´ë´Ù¼öÀÇ ÀÛ¾÷ÀÌÀÖ¾î ??´ë´Ù¼öÀÇ Á÷¿øÀÌ °¡Àå Á¤È®ÇÏ°í Á¤È®ÇÕ´Ï´Ù. À̸¦ À§ÇØ °³¹ß µÈ ºÐ¼® µµ±¸´Â ÇÑÆíÀ¸·Î´Â »ýäÁöÇ¥¸¦ ½Äº°ÇÏ°í ´Ù¸¥ ÇÑÆíÀ¸·Î´Â EEG ·¹ÄÚµùÀÇ Å¸±ê Çؼ®À» Çã¿ëÇÕ´Ï´Ù.
Àü±Ø ĸÀ» »ç¿ëÇÏ¿© ³úÆĸ¦ ±â·ÏÇÏ´Â µ¿¾È ȯÀÚ´Â ÀÏÁ¤ÇÑ °£°ÝÀ¸·Î °£´ÜÇÑ ÀÛ¾÷ (¿¹ : À̹ÌÁö ºñ±³ ¶Ç´Â ¼öÇÐ ¹®Á¦ ÇØ°á)À» Ç¥½ÃÇϴ ȸéÀ» °üÂûÇÕ´Ï´Ù. ¹öÆ°À» ´©¸£¸é ´ë´äÀÌ Ç¥½ÃµË´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º´Â ¾à 30 ºÐ Á¤µµ °É¸³´Ï´Ù. ÃæºÐÇÑ ´ëºñ¸¦ È®º¸Çϱâ À§Çؼ´Â ÃæºÐÇÑ ÀÛ¾÷À» ¿Ï·áÇÏ°í ó¸®ÇؾßÇÕ´Ï´Ù. ºÐ¼®Àº ÇöÀå¿¡¼ ÈÆ·Ã µÈ Á÷¿øÀÌ ¼öÇàÇϰųª HBImed°¡ Á¦°øÇÏ´Â º¸°í¼ ¼ºñ½º¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁÖÀÇ·Â °áÇÌ Àå¾ÖÀÇ ¾ÆÇüÀ» °ËÃâÇϱâ À§ÇØ ÀÌ¹Ì °³¹ß µÈ »ýäÁöÇ¥´Â 90% ÀÌ»óÀÇ °Ç°ÇÑ ÇÇÇèÀÚ¿¡ ´ëÇÑ Â÷º° Áö¼ö¸¦ ´Þ¼ºÇÕ´Ï´Ù. ÀÌ°ÍÀº ´õ Á¤È®ÇÑ Áø´Ü ¹× Ä¡·á (¿¹¸¦ µé¾î ÀûÀýÇÑ ¾à¹°ÀÇ ¼±ÅÃ)¿¡ ´ëÇѺ¸´Ù ¸íÈ®ÇÑ Áö½Ã¸¦ °¡´ÉÇÏ°ÔÇÑ´Ù. Á¤½Å ºÐ¿Áõ (Á¶±â ¹ß°ß Æ÷ÇÔ), ¿ì¿ïÁõ ¹× ½ºÆ®·¹½º¿Í °°Àº ´Ù¸¥ Áúº´¿¡ ´ëÇÑ »ýäÁöÇ¥°¡ Áغñ ÁßÀÔ´Ï´Ù. HBImed¿¡ ÀÇÇÑ µ¥ÀÌÅͺ£À̽º ±â¹ÝÀÇ ºÐ¼®ÀÌ ÀÌ¹Ì ¸¹Àº °üÇà°ú Áø·á¼Ò¿¡¼ »ç¿ëµÇ°í ÀÖÁö¸¸, »ýäÁöÇ¥¸¦À§ÇÑ È¹±âÀûÀÎ ±â¼úÀº ¾ÆÁ÷ ³ª¿ÀÁö ¾Ê¾Ò½À´Ï´Ù. HBImed AGs µ¥ÀÌÅͺ£À̽º ¹× ºÐ¼® ¼ÒÇÁÆ®¿þ¾î´Â À¯·´ ¹× ¹Ì±¹¿¡¼ ÀÇ·á ±â±â·Î ½ÂÀεǾú½À´Ï´Ù. µû¶ó¼, »ýäÁöÇ¥ÀÇ Ãß°¡ È®ÀÎ ¹× ½ÂÀÎÀ»À§ÇÑ °æ·Î°¡ »èÁ¦µË´Ï´Ù.
¿ì¸®´Â Á¤½Å°ú¿Í ½Å°æÇÐÀÇ »õ·Î¿î ½Ã´ë·Î µé¾î¼°í ÀÖ½À´Ï´Ù. óÀ½¿¡´Â Á¤½Å Àå¾ÖÀÇ Áø´Ü ¹× Åë°è ¸Å´º¾ó (DSM-V)ÀÇ ´Ù¼¸ ¹ø° °³Á¤ÆÇÀÌ »ý¹°ÇÐÀû ¸¶Ä¿¿¡ µû¶ó Á¤½Å Àå¾Ö¸¦ ºÐ·ùÇÏ´Â °ÍÀ» ¸ñÇ¥·Î »ï¾Ò½À´Ï´Ù. ¸¶Áö ¸øÇØ ³ªÅ¸³ª´Â °üÇàÀÇ ¹ÝÀÀ°ú ¾ÆÁ÷±îÁö ¿©·¯ °¡Áö ºÒÈ®½Ç¼ºÀÌ Á¸ÀçÇÑ´Ù´Â »ç½Ç ¶§¹®¿¡ ¹ÙÀÌ¿À ¸¶Ä¿ Á¢±Ù¹ýÀÇ Á¦ÀÛÀÚ´Â 6 Â÷ °³Á¤±îÁö DSM¿¡ Á¢±Ù¹ýÀÇ Æ÷ÇÔÀ» ¿¬±âÇϱâ·Î °áÁ¤Çß´Ù. »õ·Î¿î Á¢±Ù¹ýÀº Á¤½Å ÀÇÇÐÀû Áø´ÜÀÌ Çൿ»Ó¸¸ ¾Æ´Ï¶ó ¾î¶² ³ú ½Ã½ºÅÛÀÌ ¼Õ»óµÇ¾ú´ÂÁö¿¡ ´ëÇÑ Áö½ÄÀ¸·Îµµ ÀÌ·ç¾îÁø´Ù °í °¡Á¤ÇÕ´Ï´Ù. °´°ü¼º°ú Åõ¸í¼ºÀ¸·Î À̾îÁö±â ¶§¹®¿¡ ¹ÙÀÌ¿À ¸¶Ä¿ Á¢±Ù¹ýÀÌ ³Î¸® ¹Þ¾Æ µé¿©Áö´Â °ÍÀº °ÅÀÇ È®½ÇÇÕ´Ï´Ù.
¸£³×»ó½º´Â ³úÆÄÀÇ ½Å°æ ¸ÞÄ¿´ÏÁò°ú °ü·ÃµÈ »õ·Î¿î ºÐ¼® ¹æ¹ý ¹× ȹ±âÀûÀÎ ¹ß°ßÀÇ °³¹ß°ú °ü·ÃÀÌ ÀÖ½À´Ï´Ù. »õ·Î¿î ¹æ¹ýÀÇ ´ë´Ù¼ö (¿¹ : ³úÆÄ ¹× À¯¹ß µÈ ¹ÝÀÀÀ» µ¶¸³Àû ÀÎ ±¸¼º ¿ä¼Ò·Î ºÐÇØ, LORETA - ÀúÇØ»óµµ ÀüÀڱ⠴ÜÃþ ÃÔ¿µ)´Â ºÒ°ú ¸î ³â Àü¿¡ ½ÇÇè½Ç ȯ°æ¿¡¼ ½ÃÀ۵Ǿú½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ »õ·Î¿î ¹æ¹ýÀ» ÀÓ»ó ½Ç½À¿¡ µµÀÔÇÏ´Â °ÍÀÌ ½Ã±ÞÇÑ °úÁ¦ÀÔ´Ï´Ù. ºÒÇàÇÏ°Ôµµ, ±âÁ¸ÀÇ Ç¥ÁØ µ¥ÀÌÅͺ£À̽º´Â »õ·Î °³¹ß µÈ ±â¼úÀ» »ç¿ëÇÏÁö ¾Ê½À´Ï´Ù.
• 1. ¾î¸°ÀÌ / û¼Ò³â : 7-17 ¼¼ (n = 300)
• 2. ¼ºÀÎ : 18-60 ¼¼ (n = 500)
• 3. ³ëÀÎ : ³ªÀÌ 61+ (n = 200)
19ä³Î EEG´Â ´«À» ¶ß°í (ÃÖ¼Ò 3 ºÐ), ´«À» °¨¾ÒÀ» ¶§ (ÃÖ¼Ò 3 ºÐ), µÎ °³ÀÇ ÀÚ±Ø GO / NOGO ÀÛ¾÷, »ê¼ú ¹× µ¶¼ °úÁ¦, û°¢ ÀÎ½Ä ¹× û·Â ÀνÄÀ» Æ÷ÇÔÇÑ ´Ù¼¸ °¡Áö ´Ù¸¥ ÀÛ¾÷ Á¶°ÇÀ¸·Î ±â·ÏµË´Ï´Ù. QEEGÀÇ Æ¯¼ºÀº Ç¥ÁØȵǾú½À´Ï´Ù. °³º° ¿¬·É´ëÀÇ Æò±Õ°ª°ú Ç¥ÁØ ÆíÂ÷°¡ ¾ò¾îÁø´Ù. "Á¤»ó¼º"°úÀÇ ÆíÇâÀº z-scores (Ç¥ÁØÈ µÈ µ¥ÀÌÅÍ¿Í °³º°ÀûÀÎ EEG ¸Å°³ º¯¼ö ÆíÂ÷ÀÇ Ç¥ÁØÈ µÈ ôµµ)¸¦ °è»êÇÔÀ¸·Î½á Æò°¡µË´Ï´Ù.
½É¸®ÇÐ °úÁ¦¿¡ ´ëÇÑ ³ú ¹ÝÀÀ (Áï, À¯¹ß µÈ ÀáÀç·Â)Àº µ¶¸³Àû ÀÎ ±¸¼º ¿ä¼Ò·Î ºÐÇص˴ϴÙ.
±¸¼º ¿ä¼Ò´Â ƯÀ¯ÀÇ ½É¸®Àû ÀÛµ¿°ú °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ±¸¼º ¿ä¼ÒÀÇ ÁøÆø°ú ´ë±â ½Ã°£À» Ç¥ÁØ µ¥ÀÌÅÍ¿Í ºñ±³Çϸé ȯÀÚÀÇ ´Ù¾çÇÑ Á¤º¸ ó¸® ´Ü°è¿¡ ´ëÇÑ »õ·Î¿î ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
ÀÓ»ó ȯ°æ¿¡¼ HBI µ¥ÀÌÅͺ£À̽º´Â °³º°È µÈ Ä¡·á °èȹÀ»À§ÇÑ ±ÍÁßÇÑ ÀÚ¿øÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ÇÁ·Î±×·¥ÀÇ ¿¹°¡ ±×¸² 1¿¡ ³ª¿Í ÀÖ½À´Ï´Ù.
´Ü¼øÈ÷ ADHD ȯÀÚÀÇ »ýü ³úÆÄ (¿ÞÂÊ, À§)¸¦ º¸¸é ÀÌ»óÀº ³ªÅ¸³ªÁö ¾Ê½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅ͸¦ ½ºÆåÆ®·³À¸·Î ¾ÐÃàÇÏ°í
½ºÆåÆ®·³À» Ç¥ÁØ µ¥ÀÌÅÍ¿Í ºñ±³Çϸé Áß¾Ó ¿µ¿ª¿¡ ¹Ý¿µµÈ ¼¼Å¸ ÁÖÆļö ¹üÀ§ (Á¤»ó, ¿À¸¥ÂÊ ½ºÆåÆ®·³)ÀÇ Á¤±Ô¼º°ú Åë°èÀûÀ¸·Î À¯ÀǹÌÇÑ (p <0.01) ÆíÂ÷¸¦ º¸ÀÔ´Ï´Ù (ÇÏ´ÜÀÇ ¸Ê ÂüÁ¶). ).
¼¼Å¸ È°µ¿¿¡ ´ëÇÑ ÀüÀڱ⠴ÜÃþ ÃÔ¿µÀÌ ±×¸²ÀÇ ¸Ç ¾Æ·¡¿¡ Ç¥½ÃµË´Ï´Ù.
ÀÌ µ¥ÀÌÅ͸¦ ¹ÙÅÁÀ¸·ÎÀÌ È¯ÀÚ¿¡°Ô ´ÙÀ½°ú °°Àº µÎ °¡Áö ´ëü ¿ä¹ýÀÌ Á¦¾ÈµË´Ï´Ù.
• RitalinÀ̳ª Concerta¿Í °°Àº Á¤½Å ÀÚ±ØÁ¦
• ³ú ÄÄÇ»ÅÍ ÀÎÅÍÆäÀ̽º (BCI)ÀÇ ¹æ¹ý·ÐÀ» »ç¿ëÇÏ¿© ºÎÁÖÀǸ¦ ¼öÁ¤Çϱâ À§ÇØ º£Å¸/¼¼Å¸ ºñÀ²À» ±³À°ÇÕ´Ï´Ù.
µ¥ÀÌÅͺ£À̽º¿Í ERPÀÇ µ¶¸³ ±¸¼º ¿ä¼Ò¸¦ ºñ±³ÇÏ¸é ´ÙÀ½°ú °°½À´Ï´Ù.
1. ȯÀÚ°¡ ¾î¶² ½É¸®Àû ¼ö¼úÀ» ÀúÇØÇϴ°¡?
2. ±â´É Àå¾Ö¸¦ ±³Á¤ ÇÒ ¼ö ÀÖ´Â ¹æ¹ý.
evoked potentialÀÇ ±¸¼º ¿ä¼Ò¸¦ ºñ±³ÇÏ´Â ¿¹°¡ ¾Æ·¡ / ¾Æ·¡ ±×¸²¿¡ ³ª¿Í ÀÖ½À´Ï´Ù. ÀÌ ±×¸²Àº Ç¥ÁØ (µÎ²¨¿î ¼±)°ú ºñ±³ÇÏ¿© ADHD ȯÀÚ (°¡´Â ¼±)¿¡ ´ëÇÑ 4 °¡Áö ±¸¼º ¿ä¼ÒÀÇ ½Ã°£ µ¿¿ªÇÐÀ» º¸¿©ÁÝ´Ï´Ù.
±¸¼º ¿ä¼Ò´Â ºñ±³ ÀÛ¾÷,ÁÖÀÇ Àüȯ, Âü¿© ¹× ¸ð´ÏÅ͸µ ÀÛ¾÷°ú °ü·ÃµË´Ï´Ù. ÀÌ·¯ÇÑ È¯ÀÚ¿Í ±Ô¹ü¿¡ ´ëÇÑ ±¸¼º ¿ä¼Ò ¸ÊÀº ¿À¸¥ÂÊ¿¡ Ç¥½ÃµË´Ï´Ù.
»¡°£»ö ÇÊÀÎ (fill-in)À¸·Î Ç¥½ÃµÈ °Íó·³ÀÌ È¯ÀÚ¿¡¼ ÇϳªÀÇ ±¸¼º ¿ä¼Ò ¸¸ ¼±ÅÃÀûÀ¸·Î Ãà¼ÒµË´Ï´Ù.
¿ì¸®ÀÇ ¿¬±¸¿¡ µû¸£¸é Àüü ADHD Àα¸´Â ¶Ñ·ÇÇÑ ±¸¼º ¿ä¼Ò¸¦ ¼±ÅÃÀûÀ¸·Î ¾ïÁ¦ÇÔÀ¸·Î½á Ư¡ Áö¾îÁö´Â °¢±â ´Ù¸¥ ¹üÁÖ·Î ³ª´µ¾î Áú ¼ö ÀÖÀ¸¸ç °¢°¢ ƯÁ¤ ¾à¹°¿¡ ¹ÝÀÀÇÕ´Ï´Ù.
ºÐ¼®Àº ´ÙÀ½ ´Ü°è·Î ±¸¼ºµË´Ï´Ù.
a) ¼öÆò ¹× ¼öÁ÷ ¾È±¸ ¿îµ¿¿¡ ÇØ´çÇÏ´Â °³º° µ¶¸³ ¼ººÐ ºÐ¼® (ICA) ±¸¼º ¿ä¼ÒÀÇ È°¼ºÈ °î¼±À» Á¦·ÎÈÇÏ´Â °Í¿¡ ±â¹ÝÇÑ °ø°£ ¿©°ú ±â¼ú »ç¿ë
b) EEGÀÇ °úµµÇÑ ÁøÆø°ú °úµµÇÏ°í ºü¸£¸ç ´À¸° ÁÖÆļö È°µ¿À» °®´Â ½Å±â¿øÀ» Á¦¿ÜÇÑ´Ù.
°í¼Ó Ǫ¸®¿¡ º¯È¯ (FFT)¿¡¼ 0.5¿¡¼ 30 Hz±îÁöÀÇ ÁÖÆļö ´ë¿ª¿¡¼ ¸ðµç Á¼Àº bin¿¡ ´ëÇØ EEG ÆÄ¿ö¿Í °£¼·À» ÃßÃâÇÕ´Ï´Ù.
½ÃÇà Âø¿ÀÀÇ °¢ ¹üÁÖ¿Í ³ôÀº ½Ã°£ Çػ󵵸¦ °¡Áø °¢ ä³Î¿¡ ´ëÇÑ ÀÓ»ó ½ÃÇè¿¡¼ Æò±Õ ³úÆĸ¦ ÃøÁ¤ÇÏ¿© »ç°Ç °ü·Ã ÀüÀ§¸¦ °è»êÇÕ´Ï´Ù.
ÇØ´ç °Ç°ÇÑ ÇÇÇèÀÚ ±×·ì¿¡ ´ëÇØ °è»ê µÈ ERP ¼öÁý¿¡¼ ICA·Î ÃßÃâÇÑ °ø°£ ÇÊÅ͸¦ Àû¿ëÇÏ¿© °³º° ERP¸¦ µ¶¸³Àû ÀÎ ±¸¼º ¿ä¼Ò·Î ºÐÇØÇÕ´Ï´Ù.
½ÅÁßÇÏ°Ô ±¸ÃàµÇ°í Åë°èÇÐÀûÀ¸·Î ÅëÁ¦µÈ ¿¬·É ȸ±ÍµÈ ±Ô¹ü Àû µ¥ÀÌÅͺ£À̽º¿¡ ´ëÇØ °è»ê µÈ ÇØ´ç º¯¼ö¿¡ ´ëÇØ º¯¼ö°¡ º¯È¯µÇ°í °¡¿ì½º ºÐÆ÷·Î È®ÀεǾú½À´Ï´Ù.
ºñ±³´Â ȯÀÚ¿Í Z- Á¡¼öÀÇ ÇüÅ·ΠÀûÀýÇÑ ¿¬·É ÀÏÄ¡ ÂüÁ¶ ±×·ì °£ÀÇ Â÷À̸¦ Ç¥ÇöÇÏ´Â ¸Å°³ º¯¼ö Åë°è ÀýÂ÷¸¦ »ç¿ëÇÏ¿© ÀÌ·ç¾îÁý´Ï´Ù. ºÐ¼® °á°ú¿Í Åë°è ºñ±³ °á°ú´Â °³º° º¸°í¼·Î ÀÛ¼ºµË´Ï´Ù.
ÇöÀç µ¥ÀÌÅͺ£À̽ºÀÇ ·¯½Ã¾Æ °úÇÐ ¾ÆÄ«µ¥¹ÌÀÇ Àΰ£ ³ú ¿¬±¸¼Ò (Human Brain Institute, HBI)¿Í ·¯½Ã¾Æ °úÇÐ ¾ÆÄ«µ¥¹Ì (Russian Medical Academy of Sciences)ÀÇ ½ÇÇè ÀÇÇÐ ¿¬±¸¼Ò (Institute of Experimental Medicine)¿¡¼ °³¹ß µÈ ¹æ¹ý·ÐÀ¸·Î ±¸Ãà µÈ »õ·Î¿î µ¥ÀÌÅͺ£À̽º¿¡¼ ÇØ°áµÇ¾ú½À´Ï´Ù. ÀÌ ¹æ¹ý·ÐÀº ¼Ò·Ã ±¹°¡ »ó (±¸ ¼Ò·Ã¿¡¼ °¡Àå ³ôÀº °úÇÐ »ó)À» ¼ö»óÇßÀ¸¸ç Àΰ£ »ý¸®ÇÐ ºÐ¾ßÀÇ µ¶Ã¢Àû ÀÎ ¹ß°ßÀ¸·Î °ø½Ä ÀÎÁ¤ ¹Þ¾Ò½À´Ï´Ù. µ¥ÀÌÅͺ£À̽º´Â ÇöÀç À¯·´°ú ¹Ì±¹ÀÇ ÀÓ»ó Áø·á »Ó¸¸ ¾Æ´Ï¶ó ÇØ¿Ü ¿©·¯ °úÇÐ ¼¾ÅÍ¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¤·®È³úÆÄ (QEEG) ¹× À¯¹ß µÈ ¶Ç´Â »ç°Ç °ü·Ã ÀáÀç·Â (ERP)Àº Á¤½Å Àå¾ÖÀÇ Áø´Ü ¹× Ç¥Àû Ä¡·á¸¦ Áö¿øÇÏ´Â À¯¿ëÇÑ µµ±¸ÀÔ´Ï´Ù. »ýü Ç¥ÁöÀÚ¸¦ »ç¿ëÇÏ¿© ³ú ÁúȯÀ» ºÐ·ùÇÏ°íº¸´Ù °³ÀÎÈ µÈ Ä¡·á¹ýÀ» »ç¿ëÇÏ´Â ¹æ¹ý°ú ³ú Áúȯ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ½Å°æ Ä¡·á¹ý¿¡ ´ëÇØ ¾Ë¾Æº¸½Ê½Ã¿À. º¸´Ù Á¤È®ÇÑ Áø´ÜÀ»ÇÏ°í ȯÀÚ¸¦º¸´Ù È¿°úÀûÀ¸·Î Ä¡·áÇϽʽÿÀ!
Á¦Ç°¹®ÀÇÇϱâÁ¤½Å ÁúȯÀº Á¤Ä¡, ÀÇ·á ¼ºñ½º Á¦°øÀÚ ¹× °æÁ¦¿¡ ¸·´ëÇÑ ºÎ´ãÀ»ÁÖ´Â ¸Þ°¡ Æ®·»µåÀÔ´Ï´Ù. º¸´Ù Àú·ÅÇÏ°í °´°üÀûÀÎ Áø´Ü µµ±¸¿¡ ´ëÇÑ ¿ä±¸°¡ °ÇÏ´Ù. HBImed AGÀÇ Á¦Ç°°ú ¼ºñ½º´Â Á¤½Å Àå¾Ö¿¡ ´ëÇÑ °´°üÀûÀÎ Áø´ÜÀ» °¡´ÉÇÏ°ÔÇÏ°í ¸ñÇ¥ ÁöÇâÀûÀÌ°í °³ÀÎÈ µÈ Ä¡·á¿¡ ±â¿©ÇÕ´Ï´Ù. HBImedAG¿¡¼ ÀÛ¼ºÇÑ ºÐ¼® µµ±¸ ¹× ÂüÁ¶ µ¥ÀÌÅͺ£À̽º´Â ¹üÀ§¿Í Á¤¹Ðµµ Ãø¸é¿¡¼ °íÀ¯ÇÕ´Ï´Ù. HBImed AG´Â 2009 ³â ½ºÀ§½º¿¡¼ 25³â°£ÀÇ ³ú ¿¬±¸ ¹× »ýüÁöÇ¥¸¦ ÀÌ¿ëÇÑ ÀÓ»ó Àû¿ë ¹×À̽ñ⿡ °³¹ß µÈ ÂüÁ¶ µ¥ÀÌÅͺ£À̽º¸¦ ÀÓ»ó Àû¿ë Á¦Ç°À¸·Î ÀüȯÇϱâ À§ÇØ ¼³¸³µÇ¾ú½À´Ï´Ù.
ÃÖ±ÙÀÇ ¿¬±¸¿¡ µû¸£¸é ADHD, Á¤½Å ºÐ¿Áõ, °¹Ú Àå¾Ö, ¿ì¿ïÁõ, ƯÁ¤ ÇнÀ Àå¾Ö µîÀÇ Æ¯Á¤ Àå¾Ö°¡ ¿©·¯ Ç¥¸é Àü±Ø¿¡ ÀÇÇØ ¸Ó¸®¿¡¼ ±â·ÏµÇ´Â ÀÚ¹ßÀû ¹× À¯µµ µÈ Àü±â ÀüÀ§ÀÇ Æ¯Á¤ ÆÐÅÏ°ú °ü·ÃµÇ¾î ÀÖÀ¸¸ç ÀÌ·¯ÇÑ ÀÚ¹ßÀûÀÌ°í ƯÈ÷ À¯¹ß µÈ ÀüÀ§´Â ³úÀÇ ±â´É°ú ±â´É Àå¾Ö¿¡ ´ëÇÑ ½Å·ÚÇÒ ¼öÀÖ´Â ³ú ÁöÇ¥¸¦ Á¦°øÇÕ´Ï´Ù. ÀÚ¹ßÀû ¹× À¯¹ß µÈ Àü±â ÀüÀ§ÀÇ ÃøÁ¤ µÈ µ¥ÀÌÅʹ ǥÁØ µ¥ÀÌÅͺ£À̽º (¿¹ : Àΰ£ µÎ³ú »öÀÎ ÂüÁ¶ µ¥ÀÌÅͺ£À̽º(HBIRD)ÀÇ µ¥ÀÌÅÍ¿Í ºñ±³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Å°³ º¯¼ö Åë°è ÀýÂ÷¸¦ ÅëÇØ µ¥ÀÌÅ͸¦ ºñ±³ÇÔÀ¸·Î½á ȯÀÚ¿Í ÇØ´ç ¿¬·É¿¡ ÀÏÄ¡ÇÏ´Â ÂüÁ¶ ±×·ì °£ÀÇ Â÷À̸¦ °è»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÄÄÇ»ÅÍ ºÐ¼®Àº Áø´Ü ¹× Ä¡·á °èȹÀÇ µµ¿òÀ¸·Î À¯¿ëÇÑ µµ±¸·Î »ç¿ëµË´Ï´Ù. ADHD¿¡ Ưº°È÷ ÃÊÁ¡À» ¸ÂÃá QEEG¿¡ ´ëÇÑ ±â»ç´Â Á¤·®Àû ³úÆÄ ºÐ¾ßÀÇ ¼±µµÀûÀÌ¸ç ¼¼°èÀûÀ¸·Î À¯¸íÇÑ °úÇÐÀÚ ÀÎ Juri Kropotov ±³¼öÀÇ ÀáÀç·Â, ½Å°æ »ý¸®ÇÐ ¹× ½Å°æ ¿ä¹ýÀ» ºÒ·¯ ÀÏÀ¸Ä×½À´Ï´Ù.
HBimedÀÇ HBI µ¥ÀÌÅͺ£À̽º´Â ±Ô¹üÀû Ç¥ÁØ ³úÆÄ µ¥ÀÌÅÍÀÇ Æ÷°ýÀûÀÎ ¼öÁýÀ̸ç, ´º·ÎÇǵå¹é Ä¡·á»çµé¿¡°Ô ÀÚ½ÅÀÇ È¯ÀÚÀÇ µ¥ÀÌÅÍ Æò°¡ ¹× Æò°¡¿¡ µµ¿òÀ» ÁÝ´Ï´Ù. HBIµ¥ÀÌÅͺ£À̽º¿¡´Â ½ºÆåÆ®·³ µ¥ÀÌÅͻӸ¸ ¾Æ´Ï¶ó ¸Å¿ì ³ôÀº ½ÅÈ£ ´ë ÀâÀ½ ºñÀ²À» °®´Â À¯¹ß ÀüÀ§ µ¥ÀÌÅÍ°¡ Æ÷ÇԵǾî ÀÖ¾î ºñ±³ÇÒ ¼ö¾ø´Â Åë°èÀû Á߿伺À» °®½À´Ï´Ù. ±âÁ¸ÀÇ µ¥ÀÌÅͺ£À̽º¿ÍÀÇ Â÷ÀÌÁ¡Àº HBimedÀÇ HBI µ¥ÀÌÅͺ£À̽º°¡ ÃֽŠÆò°¡ ¹æ¹ý (¿¹ : ³úÆÄÀÇ ºÐÇØ ¹× µ¶¸³Àû ÀÎ ±¸¼º ¿ä¼Ò·ÎÀÇ ¹ÝÀÀ À¯¹ß ¹× LORETA - ÀúÇØ»óµµ ÀüÀڱ⠴ÜÃþ ÃÔ¿µ)À» °í·ÁÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. HBImed HBI µ¥ÀÌÅͺ£À̽º´Â ·¯½Ã¾Æ °úÇÐ ¾ÆÄ«µ¥¹ÌÀÇ Human Brain Institute ¹× ·¯½Ã¾Æ °úÇпøÀÇ ½ÇÇè ÀÇÇÐ ¿¬±¸¼Ò¿¡¼ °³¹ß µÈ ¹æ¹ýÀ» ±â¹ÝÀ¸·ÎÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ¼Ò·ÃÀÇ ±¹°¡ »óÀ» ¼ö»óÇßÀ¸¸ç °ø½ÄÀûÀ¸·Î Àΰ£ »ý¸®ÇÐ ºÐ¾ßÀÇ µ¶Ã¢Àû ÀÎ ¹ß°ßÀ¸·Î ÀÎÁ¤ ¹Þ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅͺ£À̽º´Â ÇöÀç Àü ¼¼°èÀÇ ¸¹Àº °úÇÐ ¼¾ÅÍ¿Í À¯·´ ¹× ¹Ì±¹ÀÇ º´¿ø ¹× Ŭ¸®´Ð¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
¿¡ÀÌÄ¡ºñ¾ÆÀ̸޵å Ç¥ÁØ ³úÆÄ µ¥ÀÌÅͺ£À̽º ±¸ÀԽà ¹®ÀÇ ÈÄ ÁÖ¹®¹Ù¶ø´Ï´Ù.
Abklärung des ADHS - Durch Biomarker zu personalisierter Medizin Journal Article ; Müller, Andreas; Candrian, Gian
Neurologie & Psychatrie; VOL. 10, Nr. 3, 2012.
Abstract
Das Problem bei der Diagnose ADHS ist vorwiegend durch das Fehlen von Objektivität definiert. Das Beiziehen von Biomarkern und das Verstehen derselben unter dem Aspekt von Handeln, Denken und Fühlen und auf dem Hintergrund des Lebensfeldes und der Lebensgeschichte löst das Problem weitgehend. Elektrophysiologische Biomarker (Quantitative Analyse des EEGs und ereigniskorrelierte Potentiale) eignen sich ausgezeichnet für das Verstehen der neuronalen Dynamik, für die Diagnosestellung und zuer Festlegung der Intervention im Sinne der personalisierte Medizin. Untersuchungen bekegen eine Hohe Validität der ereigniskorrelierten Potenziale}
The QEEG theta/beta ratio in ADHD and normal controls: Sensitivity, specificity, and behavioral correlates Journal Article; Ogrim, Geir; Kropotov, Juri D; Hestad, Knut
Psychiatry Research, 2012.
Abstract
The purpose of the present study was to determine if the theta/beta ratio, and theta and beta separately, correlate with behavioral parameters, and if these measures discriminate between children and adolescents with ADHD and normal gender- and age-matched controls. Sixty-two patients and 39 controls participated in the study. A continuous performance test (CPT), a GO/NOGO test and two rating scales were used to measure behavior in the patient group. EEG spectra were analyzed in eyes-closed and eyes-opened conditions, and in a GO/NOGO task in both groups. Neither the theta/beta ratio at CZ, nor theta and beta separately discriminated significantly between patients and controls. When each person was compared with the database significant elevations of theta were found in 25.8% of the patients and in only one control subject (2.6%). In the ADHD group, theta at CZ was positively correlated with inattention and executive problems and negatively correlated with hyperactivity/impulsivity. Beta correlated with good attention level in the control group, but with ADHD symptoms in the patients. Omission errors in the GO/NOGO test discriminated between patients and controls with an accuracy of 85%. For theta at CZ, the accuracy was 62%. Significantly elevated theta characterized a subgroup of ADHD and correlated with inattention and executive problems.
Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study Journal Article ; Müller, Andreas; Candrian, Gian; Grane, Venke Arntsberg; Kropotov, Juri D
Ponomarev, Valery A; Baschera, Gian-Marco ; Nonlinear Biomedical Physics, 5:5, 2011.
Abstract
Background: There are numerous event-related potential (ERP) studies in relation to attention-deficit hyperactivity disorder (ADHD), and a substantial number of ERP correlates of the disorder have been identified. However, most of the studies are limited to group differences in children. Independent component analysis (ICA) separates a set of mixed event-related potentials into a corresponding set of statistically independent source signals, which are likely to represent different functional processes. Using a support vector machine (SVM), a classification method originating from machine learning, this study aimed at investigating the use of such independent ERP components in differentiating adult ADHD patients from non-clinical controls by selecting a most informative feature set. A second aim was to validate the predictive power of the SVM classifier by means of an independent ADHD sample recruited at a different laboratory. Methods: Two groups of age-matched adults (75 ADHD, 75 controls) performed a visual two stimulus go/no-go task. ERP responses were decomposed into independent components, and a selected set of independent ERP component features was used for SVM classification. Results: Using a 10-fold cross-validation approach, classification accuracy was 91%. Predictive power of the SVM classifier was verified on the basis of the independent ADHD sample (17 ADHD patients), resulting in a classification accuracy of 94%. The latency and amplitude measures which in combination differentiated best between ADHD patients and non-clinical subjects primarily originated from independent components associated with inhibitory and other executive operations. Conclusions: This study shows that ERPs can substantially contribute to the diagnosis of ADHD when combined with up-to-date methods.
Analysis of EEG characteristic at early stages of depression using method of independent components Journal Article
Grin'-Iatsenko, VA; Baas, Ineke; Ponomarev, Valery A; Kropotov, Juri D ; Fiziol Cheloveka. Jan-Feb;37(1):45-55, 2011.
Abstract
Independent Component Analysis (ICA) was used for 19-channel resting EEG analysis 111 patients at early stages of depressive disorder and 526 age-matched healthy subjects. Comparison of independent components power spectra in depressed patients and healthy subjects in two states: Eyes closed and Eyes open, has revealed significant differences between groups for three frequency bands: Theta (4-7.5 Hz), Alpha (7.5-14 Hz), and Beta (14-20 Hz). Increased power of alpha and theta activity in depressed patients at parietal and occipital sites may be caused by decreased cortical activation of these regions. Diffuse enhancement of beta activity level can correlate with anxiety symptoms which take an important place in clinical picture of depressive disorder at early stages. Using of ICA method for comparison of spectral characteristics of EEG in groups of patients with different brain pathology and healthy subjects gives a possibility to localize more precisely the discovered differences as compare to traditional analysis of EEG spectra.
Dissociating action inhibition, conflict monitoring and sensory mismatch into independent components of event related potentials in GO/NOGO task Journal Article ; Kropotov, Juri D; Ponomarev, Valery A; Hollup, Stig; Müller, Andreas
NeuroImage 57, 565–575, 2011.
Abstract
The anterior N2 and P3 waves of event related potentials (ERPs) in the GO/NOGO paradigm in trials related to preparatory set violations in previous studies were inconsistently associated either with action inhibition or conflict monitoring operations. In the present study a paired stimulus GO/NOGO design was used in order to experimentally control the preparatory sets. Three variants of the same stimulus task manipulated sensory mismatch, action inhibition and conflict monitoring operations by varying stimulus-response associations. The anterior N2 and P3 waves were decomposed into components by means of independent component analysis (ICA). The ICA was performed on collection of 114 individual ERPs in the three experimental conditions. Three of the independent components were selectively affected by the task manipulations indicating association of these components with sensory mismatch, action inhibition and conflict monitoring operations. According to sLORETA the sensory mismatch component was generated in the left and right temporal areas, the action suppression component was generated in the supplementary motor cortex, and the conflict monitoring component was generated in the anterior cingulate cortex.
Classification of ADHD patients on the basis of independent ERP components using a machine learning system Journal Article ; Müller, Andreas; Candrian, Gian; Kropotov, Juri D; Ponomarev, Valery A; Baschera, Gian-Marco
Nonlinear Biomedical Physics, 4 (Suppl 1) :S1, 2010.
Abstract
Background: In the context of sensory and cognitive-processing deficits in ADHD patients, there is considerable evidence of altered event related potentials (ERP). Most of the studies, however, were done on ADHD children. Using the independent component analysis (ICA) method, ERPs can be decomposed into functionally different components. Using the classification method of support vector machine, this study investigated whether features of independent ERP components can be used for discrimination of ADHD adults from healthy subjects. Methods: Two groups of age- and sex-matched adults (74 ADHD, 74 controls) performed a visual two stimulus GO/NOGO task. ERP responses were decomposed into independent components by means of ICA. A feature selection algorithm defined a set of independent component features which was entered into a support vector machine. Results: The feature set consisted of five latency measures in specific time windows, which were collected from four different independent components. The independent components involved were a novelty component, a sensory related and two executive function related components. Using a 10-fold cross-validation approach, classification accuracy was 92%. Conclusions: This study was a first attempt to classify ADHD adults by means of support vector machine which indicates that classification by means of non-linear methods is feasible in the context of clinical groups. Further, independent ERP components have been shown to provide features that can be used for characterizing clinical populations.
Beneficial Effects of Electrostimulation Contingencies on Sustained Attention and Electrocortical Activity Journal Article ; Chen, Max Jean-Lon; Thompson, Trevor; Kropotov, Juri D; Gruzelier, John H
CNS Neuroscience & Therapeutics 00, 1–16, 2010.
Abstract
Introduction: Chinese acupuncture therapy has been practiced for more than 3000 years. According to neuroimaging studies, electroacupuncture has been demonstrated to be effective via control of the frequency parameter of stimulation, based on the theory of frequency modulation of brain function. Aims: To investigate the following: (1) possible sustained effects of acustimulation in improving perceptual sensitivity in attention by comparing before, during, and 5 min following stimulation; (2) relations between commission errors and the motor inhibition event-related potential (ERP) component measured with independent component analysis (ICA); (3) whether habituation would be demonstrated in the sham control group and would be militated by acustimulation in the experimental groups. Results: Twenty-seven subjects were divided into three groups (n = 9). d-Prime (d) derived from signal detection theory was used as an index of perceptual sensitivity in the visual continuous performance attention test. Increased d was found during both alternating frequency (AE) and low frequency (LE) stimulation, but with no change in the sham control group (SE). However, only following AE was there a sustained poststimulation effect. Spatial filtration-based independent components (ICs) in the AE group revealed significantly decreased amplitudes of the motor inhibition ICs both during and poststimulation. There was a significant habituation effect from task repetition in the sham group with decreased amplitudes of ICs as follows: the visual comparison component difference between go (correct response) and nogo cues (correct withheld response), the P400 action monitoring and the working memory component in the nogo condition, and the passive auditory component on control trials. Conclusion: The results showed associations between acustimulation and improved perceptual sensitivity with sustained improvements following AE, but not LE stimulation. Improvements in commission errors in the AE group were related to the motor inhibition IC. The activational effects of acustimulation apparently attenuated the acrosstask habituation that characterized the control group.
The comparison of clustering methods of EEG independent components in healthy subjects and patients with post concussion syndrome after traumatic brain injury Journal Article ; Ponomarev, Valery A; Gurskaia, OE; Kropotov, Juri D; Artiushkova, LV; Müller, Andreas
Fiziol Cheloveka. Mar-Apr;36(2):5-14, 2010.
Abstract
The comparison of three different clustering methods of 19-channels EEG independent components in 518 healthy subjects and 87 patients with post concussion syndrome after traumatic brain injury was performed to define more exact the location of sources of pathologic brain activity. Following methods of grouping were used: clustering of independent components topographies, clustering of coordinates of equivalent dipole sources corresponding to independent components topographies and sorting of independent components using extremes of equivalent source current density computed by Standardized Low Resolution Electromagnetic Tomography (sLORETA).The comparison of power spectra of independent components revealed statically significant increase of EEG power located in frontal and temporal brain areas in delta, theta and alpha frequency bands in patients with post concussion syndrome after traumatic brain injury. The method of clustering of independent components topographies seems to be most sensitive in comparison with other two methods.
Normative EEG Spectral Characteristics in Healthy Subjects Aged 7 to 89 Years Journal Article ; Tereshchenko, E P; Ponomarev, Valery A; Müller, Andreas; Kropotov, Juri D
Human Physiology, Vol. 36, No. 1, pp. 1–12., 2010.
Abstract
The EEGs of 885 healthy subjects of both sexes aged 7 to 89 years were recorded in two modes: with the subjects¡¯ eyes closed and with the eyes open. The subjects were divided into 20 age groups, for each of which the normative values of the EEG spectral characteristics were determined: the total EEG power spectra and the EEG independent component power spectra in the ¥Ä, ¥è, ¥á, and ¥â frequency bands. Tables of confidence intervals with a level of confidence of 0.95 were constructed for each electrode channel in the case of the EEG power spectra and for each component in the case of the EEG independent component power spectra. The normative values obtained may provide EEG specialists with objective criteria for assessing cerebral dysfunction.
Independent component approach to the analysis of EEG recordings at early stages of depressive disorders Journal Article ; Grin-Yatsenko, Vera A; Baas, Ineke; Ponomarev, Valery A; Kropotov, Juri D
Clinical Neurophysiology 121, 281–289, 2010.
Abstract
Objective: A modern approach for blind source separation of electrical activity represented by Independent Components Analysis (ICA) was used for QEEG analysis in depression. Methods: The spectral characteristics of the resting EEG in 111 adults in the early stages of depression and 526 non-depressed subjects were compared between groups of patients and healthy controls using a combination of ICA and sLORETA methods. Results: Comparison of the power of independent components in depressed patients and healthy controls have revealed significant differences between groups for three frequency bands: theta (4–7.5 Hz), alpha (7.5–14 Hz), and beta (14–20 Hz) both in Eyes closed and Eyes open conditions. An increase in slow (theta and alpha) activity in depressed patients at parietal and occipital sites may reflect a decreased cortical activation in these brain regions, and a diffuse enhancement of beta power may correlate with anxiety symptoms playing an important role on the onset of depressive disorder. Conclusions: ICA approach used in the present study allowed us to localize the EEG spectra differences between the two groups. Significance: A relatively rare approach which uses the ICA spectra for comparison of the quantitative parameters of EEG in different groups of patients/subjects allows to improve an accuracy of measurement.
Decomposing N2 NOGO wave of event-related potentials into independent components Journal Article ; Kropotov, Juri D; Ponomarev, Valery A
Neuroreport, Volume 20 - Issue 18 - pp 1592-1596, 2009.
Abstract
Inconsistencies in previous attempts to localize the N2 wave in the GO/NOGO task led to the present investigation. The inconsistencies were probably because of heterogeneity of psychological operations involved in GO/NOGO tasks. We applied the independent component analysis to a collection of individual event-related potentials in response to GO and NOGO cues in the two stimulus visual GO/NOGO task. The selected six independent components with different topographies and time courses constituted 87% of the artifact-free signal variance. Three of them were loaded into the frontally distributed N2 wave. According to standardized low-resolution electromagnetic tomography these three independent components were generated in the supplementary motor cortex, left angular gyrus and anterior cingulate cortex.
EEG Power Spectra at Early Stages of Depressive Disorders Journal Article ; Grin-Yatsenko, Vera A; Baas, Ineke; Ponomarev, Valery A; Kropotov, Juri D
Journal of Clinical Neurophysiology, Volume 26, Number 6, 2009.
Abstract
Abstract: In previous quantitative EEG studies of depression, mostly patients with a lifetime history of depressive disorders were reported. This study examined quantitative EEG parameters obtained in the early stages of depression in comparison with age-matched healthy controls. EEG was recorded using two different montages in eyes closed and eyes open resting states. A significant increase in spectrum power in theta (4 –7.5 Hz), alpha (7.5–14 Hz), and beta (14 –20 Hz) frequency bands was found in depressed patients at parietal and occipital sites, both in eyes closed and eyes open conditions. These results suggest that an increase in slow (theta and alpha) activity in the EEG pattern may reflect a decreased cortical activation in these brain regions. Enhancement of beta power may correlate with anxiety symptoms that most likely play an important role on the onset of depressive disorder.
What can event related potentiials contribute to neuropsychology? Journal Article ; Kropotov, Juri D; Müller, Andreas
ACTA NEUROPSSYCHOLOGICA, Vol. 7, No. 3, 169-181, 2009.
Abstract
While psychometrics measures brain functions in terms of behavioral parameters, a recently emerged branch of neu ro science called neurometrics relies on measuring the electrophysiological parameters of brain functioning. There are two approaches in neurometrics. The first relies on the spectral characteristics of spontaneous electroencephalograms (EEG) and measures deviations from normality in EEG recorded in the resting state. The second approach relies on event related potentials that measure the electrical responses of the brain to stimuli and actions in behavioral tasks. The present study reviews recent research on the application of event related potentials (ERPs) for the discrimination of different types of brain dysfunction. Attention deficit-hyperactivity disorder (ADHD) is used as an example. It is shown that the diagnostic power of ERPs is enhanced by the recent emergence of new methods of analysis, such as Independent Component Analysis (ICA) and Low Resolution Electromagnetic Tomography (LORETA).
Comparative Efficiencies of Different Methods for Removing Blink Artifacts in Analyzing Quantitative Electroencephalogram and Event-Related Potentials Journal Article ; Tereshchenko, E P; Ponomarev, Valery A; Kropotov, Juri D; Müller, Andreas
Human Physiology, Vol. 35, No. 2, pp. 241–247, 2009.
Abstract
Different methods for blink artifact correction in multichannel electoencephalogram (EEG) have been compared with respect to their efficiency and the relative systemic error of the estimation of the parameters of EEG spectra and event-related potentials (ERPs). Three methods of blink artifact correction have been used: distraction of the electrooculogram (EOG) signals from EEG signals, zeroing independent EEG components accounted for by vertical eye movement, and zeroing the main EEG components related to blinking. The results have shown that these correction methods can substantially improve the accuracy of the estimation of quantitative EEG parameters while only slightly distorting signals from most EEG derivations. It is concluded that wide use of these methods for EEG processing in fundamental and applied studies would be advisable.
Electroencephalographic study of children with attention deficit hyperactivity disorder before and after treatment with strattera Journal Article ; Nikishina, IS; Chutko, LS; Surushina, SIu; Yakovenko, EA; Kropotov, Juri D
Zh Nevrol Psikhiatr Im S S Korsakova. 108(12):60-2, 2008.
Changes in the late positive component of evoked potentials in the GO/NOGO test after cryocingulotomy Journal Article ; Kropotov, Juri D; Poliakov, IuI; Ryzhenkova, IuIu; Konenkov, SIu; Ponomarev, Valery A; Anichkov, AD; Pronina, MV
Fiziol Cheloveka. Mar-Apr;33(2):16-22, 2007.
Use of cortexin in adolescence neurasthenia Journal Article ; Chutko, LS; Kropotov, Juri D; Surushkina, SIu; Iakovenko, EA; Nikishena, IS; Livinskaia, AM; Anisomova, TI
Zh Nevrol Psikhiatr Im S S Korsakova; 106(2):50-1, 2006.
The Ratio between the Phasic and Tonic Components of the Frontal Midline ¥È Rhythm in the Attention Test Journal Article ; Evdokimov, S A; Kropotov, Juri D; Müller, Andreas; Tereshchenko, E P
Human Physiology, Vol. 32, No. 6, pp. 631–637, 2006.
Abstract
The frontal midline ¥È rhythm in the GO/NOGO paradigm was studied in a group of apparently healthy children at ages of 7–13 years. Calculated event-related synchronization in response to stimulus presentation in tests was used as an index of the phasic component, and the relative change in the EEG power in the ¥È band (compared to the activity in the state of quiet wakefulness) in response to test performance was used as an index of the tonic component. Subjects were divided into two groups according to the characteristics of the baseline ¥È activity. A statistically significant correlation between the phasic and tonic components of the ¥È rhythm was found in the group of children characterized by the absence of the frontal midline ¥È rhythm in the baseline EEG. No such correlation was found in the group of children characterized by a pronounced baseline ¥È rhythm. The results testify to the functional heterogeneity of the phasic and tonic components of the human midline ¥È rhythm.
ERPs correlates of EEG relative beta training in ADHD children Journal Article ; Kropotov, Juri D; Grin-Yatsenko, Vera A; Ponomarev, Valery A; Chutko, LS; Yakovenko, EA; Nikishena, IS
Int J Psychophysiol. 55(1):23-34, 2005.
Abstract
Eighty-six children (ages 9-14) with attention deficit hyperactivity disorder (ADHD) participated in this study. Event-related potentials (ERPs) were recorded in auditory GO/NOGO task before and after 15-22 sessions of EEG biofeedback. Each session consisted of 20 min of enhancing the ratio of the EEG power in 15-18 Hz band to the EEG power in the rest of spectrum, and 7-10 min of enhancing of the ratio of the EEG power in 12-15 Hz to the EEG power in the rest of spectrum with C3-Fz electrodes' placements for the first protocol and C4-Pz for the second protocol. On the basis of quality of performance during training sessions, the patients were divided into two groups: good performers and bad performers. ERPs of good performers to GO and NOGO cues gained positive components evoked within 180-420 ms latency. At the same time, no statistically significant differences between pre- and post-training ERPs were observed for bad performers. The ERP differences between post- and pretreatment conditions for good performers were distributed over frontal-central areas and appear to reflect an activation of frontal cortical areas associated with beta training.
Transcranial micropolarisation in the treatment of adolescent neurasthenia Journal Article ; Chutko, LS; Kropotov, Juri D; Surushkina, SIu; Iakovenko, EA; Nikishena, IS; Anisimova, TI; Livinskaia, AM
Vopr Kurortol Fizioter Lech Fiz Kult. , Jul-Aug;(4):34-5, 2005.
ADHS – Neurodiagnostik in der Praxis Book ; Müller, Andreas; Candrian, Gian; Kropotov, Juri D
Springer-Verlag, 2011, ISBN: 139783642200618.
Abstract
Die Entstehung des vorliegenden Buches hatte verschienene Ausgangspunkte. Zunächst war da das zunehmende Unbehagen in Bezug auf Objektivität und Aussagemöglichkeiten psychologisch- psychiatrischer Diagnostik, das sich während unserer praktischen Tätigkeit im Verlauf der letzten 30 Jahre entwickelt hatte. Obwohl die derzeit zur Verfügung stehenden psychometrischen Testmethoden eine lange Tradition haben und eine Vielzahl von Untersuchungen zu den Gütekriterien vorliegen, tragen sie in den meisten Fällen wenig zur Diagnose bei. Es ist zwar möglich, kognitiv-verhaltensm䩬ige Funktionen wie verschiedene Arten des Denkens und Problemlösens, Arbeitstempo, Gedächtnis sowie Aufmerksamkeit mit mehr oder weniger originellen Instrumenten zu erfassen und Zugänge zu den Emotionen und zum Verhalten mittels Fragebogen zu eröff nen. Das Problem bei allen diesen Erkenntnissen liegt aber darin, dass sie meist eine geringe ökologische Validität haben und zusätzlich wenig zum Verstehen menschlicher Andersartigkeit beitragen. Das führt dazu, dass der klinisch erhobene Psychostatus weitgehend durch die Schilderungen der Betroff enen und deren Angehörigen zustande kommt. Die Eindrücke des Beurteilers sind situativ geprägt und im Wesentlichen abhängig vom Empfi nden der Fachperson selbst. Diese subjektive Prägung der Diagnostik und die damit verbundene Variabilität und Ungenauigkeit war sozusagen die »Triebfeder « für das Suchen nach neuen Möglichkeiten für eine objektivere Diagnostik.
Neurofeedback and Neuromodulation Techniques and Applications Book ; Coben, Robert; Evans, James R (Ed.)
Academic Press, 2010.
Abstract
It was not many years ago that the term "neuromodulation" would have been considered a contradictory term by many at least in regard to modification of a damaged or dysfunctional central nervous system. Although it generally had been assumed that learning and memory somehow resulted in relatively permanent modifications of brain structure and/or function, the notion persisted that neural function and structure basically were set by genetics and were relatively immune to change. However, within the past couple of decades developments in neuroimaging have enabled scientific research providing evidence of neural plasticity far greater than previously had been imagined. Research on neural plasticity is burgeoning, along with a plethora of scientifically unsubstantiated claims by practitioners from many different professions for "brain-based" methods for remediation of various medical, psychological, and educational problems.
Quantitative EEG, Event-Related Potentials and Neurotherapy Book ; Kropotov, Juri D
Academic Press, 2008, ISBN: 978-0123745125.
Abstract
While the brain is ruled to a large extent by chemical neurotransmitters, it is also a bioelectric organ. The collective study of 'Quantitative ElectroEncephaloGraphs (QEEG - the conversion of brainwaves to digital form to allow for comparison between neurologically normative and dysfunctional individuals), Event Related Potentials (ERPs - electrophysiological response to stimulus) and Neurotherapy (the process of actually retraining brain processes to)' offers a window into brain physiology and function via computer and statistical analyses of traditional EEG patterns, suggesting innovative approaches to the improvement of attention, anxiety, mood and behavior. The volume provides detailed description of the various EEG rhythms and ERPs, the conventional analytic methods such as spectral analysis, and the emerging method utilizing QEEG and ERPs. This research is then related back to practice and all existing approaches in the field of Neurotherapy - conventional EEG-based neurofeedback, brain-computer interface, transcranial Direct Current Stimulation, and Transcranial Magnetic Stimulation - are covered in full. Additionally, software for EEG analysis is provided on a companion web site so that the theory can be practically utilized on the spot, and a database of the EEG algorithms described in the book can be combined with algorithms uploaded by the user in order to compare dysfunctional and normative data. While it does not offer the breadth provided by an edited work, this volume does provide a level of depth and detail that a single author can deliver, as well as giving readers insight into the personal theories of one of the pre-eminent leaders in the field. Features and benefits include: provides a holistic picture of quantitative EEG and event related potentials as a unified scientific field; presents a unified description of the methods of quantitative EEG and event related potentials; gives a scientifically based overview of existing approaches in the field of neurotherapy; provides practical information for the better understanding and treatment of disorders, such as ADHD, Schizophrenia, Addiction, OCD, Depression, and Alzheimer's Disease; companion web site containing software which analyzes EEG patterns and database sample EEGs; and, reader can see actual examples of EEG patterns discussed in book and can upload their own library of EEGs for analysis.
New tools for diagnosis and modulation of brain dysfunction Technical Report ; Kropotov, Juri D
Abstract
Suppose a boy comes to your door. His behavior looks like typical ADHD: he is extremely inattentive, impulsive and hyperactive. He performs poorly in continuous performance tasks. Recent research in neurophysiology of ADHD shows that there are several reasons why the boy behaves in this way: 1. patient may have a focus in his cortex , which without any overt symptoms of epilepsy impairs information processing and, consequently, mimics attention deficit (see Aldenkamp, Arends, 2004); 2. patient may have a lack of overall cortical activation due to dysfunction of the ascending reticular system of the brain stem (Sergeant , 2000); 3. patient may have genetically determined hyperactive frontal lobes (Clarke et al., 2003); 4. patient may have dysfunction of the prefrontal-striato-thalamic system due to structural abnormality (Silk et al., 2009; Busch et al., 2005; Castellanos et al., 1996); or increase of dopamine reuptake dopamine transporters in the striatum (Krause et al., 2003) 5. patient may have hypoactivation of the premotor cortex of the brain, which is compensated by increase of motoric activity (Simmonds et al., 2007); 6. patient may have dysfunctioning in the anterior gyrus cingulus which produces anxiety, emotional instability and hyperactivation (Albrecht et al., 2008).