tDCS Publications

Adjunctive Transcranial Direct Current Stimulation (tDCS) Journal Articles

Çмú¿¬±¸ ³í¹® ¹ßÇ¥ ÃâÆǹ°



Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields

Giulio Ruffini, Michael D. Fox, Oscar Ripolles, Pedro Cavaleiro Miranda, Alvaro Pascual-Leone,


Keywords : tCS; tDCS; tACS; Transcranial direct current stimulation; Transcranial alternating current stimulation; Electric fields; Targeted stimulation; Multifocal stimulation; Human head model; TES; NIBS; fMRI; PET; rs-fcMRI

Abstract

Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating current tCS (tACS).


ÀÚ¼¼È÷ º¸±â



Publications and Scientific Posters:

Giulio Ruffini, Fabrice Wendling, Isabelle Merlet, Behnam Molaee-Ardekani, Abeye Mekonnen, Ricardo Salvador, Aureli Soria-Frisch, Carles Grau, Stephen Dunne, and Pedro C. Miranda, Transcranial Current Brain Stimulation (tCS): Models and Technologies, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 21, NO. 3, MAY 2013

Miranda, P.C., Mekonnen, A., Salvador, R., Ruffini, G., 2013. The electric field in the cortex during transcranial current stimulation. Neuroimage 70, 45–58.

Giulio Ruffini, Michael D. Fox, Oscar Ripolles, Pedro Cavaleiro Miranda, Alvaro Pascual-Leone, Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields, available online, Dec 15, Neuroimage (2013)

G. Ruffini, tDCS clinical research - highlights: Stroke, NE White Paper NEWP201302, 2013

Kanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, Raphael Y., | Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation, J Comp Neurol. 2002 Dec 16;454(3):350-60.

Wittenberg GF, Schaechter JD., The neural basis of constraint-induced movement therapy , Curr Opin Neurol. 2009 Dec;22(6):582-8.

Rioult-Pedotti MS, Friedman D, Donoghue JP., Learning-induced LTP in neocortex., Science. 2000 Oct 20;290(5491):533-6

G. Ruffini, tDCS clinical research - highlights: Pain, NE White Paper NEWP201301, 2013 10. Study: F. Fregni, P. S. Boggio, M. C. Lima, M. J. Ferreira, T. Wagner, S. P. Rigonatti, A. W. Castro, D. R. Souza, M. Riberto, S. D. Freedman, M. A. Nitsche, and A. Pascual-Leone. 2006. | A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122 (1-2):197-209.

G. Ruffini, tDCS clinical research - highlights: Depression, NE White Paper NEWP201303, 2013

Vanneste S, De Ridder D., Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity.. Eur J Neurosci. 2011 Aug;34(4):605-14.

De Ridder D, Vanneste S. EEG Driven tDCS Versus Bifrontal tDCS for Tinnitus.. Front Psychiatry. 2012 Sep 25;3:84.

De Ridder D, Vanneste S. Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res. 2010 May;202(4):779-85.

Jae-Jin Song, Sven Vanneste, Paul Van de Heyning, and Dirk De Ridder Transcranial Direct Current Stimulation in Tinnitus Patients: A Systemic Review and Meta-Analysis. The Scientific World Journal, vol. 2012, Article ID 427941, 7 pages, 2012.

Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F., Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy.. Epilepsia. 2006 Jul;47(7):1216-24.

Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F., Transcranial direct current stimulation for treatment-refractory epilepsy in children: a pilot study. Clinical Neurophysiology, Volume 122, Supplement 1 , Page S2, June 2011.

Antal A, Kriener N, Lang N, Boros K, Paulus W., Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine., Cephalalgia. 2011 May;31(7):820-8

Dasilva AF, Mendonca ME, Zaghi S, Lopes M, Dossantos MF, Spierings EL, Bajwa Z, Datta A, Bikson M, Fregni F., tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine, Headache. 2012 Sep;52(8):1283-95

Rachel L. Goldman, Jeffrey J. Borckard, Heather A. Frohman, Patrick M. O¡¯Neil, Alok Madan, Laura K. Campbell, Amanda Budak, Mark S. George, Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving, Appetite, Volume 56, Issue 3, June 2011, Pages 741–746

Victoria C. Wing, Mera S. Barr, Caroline E. Wass, Nir Lipsman, Andres M. Lozano, Zafiris J. Daskalakis, Tony P. George, Brain Stimulation Methods to Treat Tobacco Addiction , Brain Stimulation, Volume 6, Issue 3, May 2013, Pages 221–230

Albert Snowball, Ilias Tachtsidis, Tudor Popescu, Jacqueline Thompson, Margarete Delazer, Laura Zamarian, Tingting Zhu, and Roi Cohen Kadosh, Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation], Current Biology, 23:987-992.

Sehm B, Schnitzler T, Obleser J, Groba A, Ragert P, Villringer A, Obrig H., Facilitation of inferior frontal cortex by transcranial direct current stimulation induces perceptual learning of severely degraded speech., J Neurosci. 2013 Oct 2;33(40)

Tobias U. Hauser, Stephanie Rotzer, Roland H. Grabner, Susan Mérillat and Lutz Jancke, Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS) , Front. Hum. Neurosci., 06 June 2013

G. Ruffini, tDCS clinical research - highlights: Cognitive Enhancement, Neuroelectrics White Paper NEWP201305, Oct 2013